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Abstract

Conditions of Kinoshita instability development of point defects and dislocation spatial distributions in the crystal
structure of UO, fuel are studied. As a result of the instability development, spatially non-uniform regions with increased
dislocation density are formed. Closed-form expressions of instability increment and spatial scale are derived. Parameters
of the instability for irradiation conditions of high burnup UO, fuel are obtained by means of numerical simulation. Insta-
bility development time is shown to be inversely proportional to fission rate and it increases as dislocation density
decreases. Calculated values of instability spatial scale and increment are in accordance with the size of fine grains and
their formation rate in the peripheral zones of high burnup LWR fuel pellets.

© 2005 Elsevier B.V. All rights reserved.

PACS: 28.41.Bm; 61.80.Az

1. Introduction

In LWR fuel elements at average burnups over 40
MWd/kgU notable structural changes arise in the
pellet outer zone [1,2]. Original grains with the size
of about 6-10 pum subdivide into submicron grains
(0.1-0.3 um) and fuel porosity in that region grows
up to 20%. The fuel structure formed is called rim-
structure or high burnup structure. Such microstruc-
ture changes affect fuel physical properties: porosity
growth influences the thermal conductivity in the
high burnup structure region and it was shown
experimentally that fracture toughness of the fuel
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increases after restructuring [3]. General pheno-
menology of restructuring is also described in [4].

The restructuring process is a complex process
and several possible mechanisms are activated in
parallel, several different diffusions and remote
forces are at work. The kind of restructuring pro-
cesses called ‘polygonization’ in [1] is the formation
of polyhedral subgrains by arising dislocation walls
experimentally observed in [5] and this possibility
will be discussed further.

The problem of obtaining a criterion that would
determine high burnup structure formation thresh-
old is of special interest, because it would allow to
determine the dependence of the start of restructur-
ing on initial fuel microstructure and irradiation
conditions, i.e. temperature, fission rate and grain
size. Proposed correlation criteria (e.g. [6,7]) are
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based on experimental data, and they show a con-
siderable spread with respect to new experimental
data. Besides, it is not clear how to extrapolate them
beyond the region of parameters at which the exper-
iments were carried out.

One of the first works dealing with examination
of a possible mechanism of fuel restructuring was
Kinoshita’s work [8]. The author suggests using
the condition of development of instability in spatial
distribution of lattice defects as starting criterion of
forming high burnup structure. In [8], a system of
non-linear rate equations describing the variation
of point defect concentrations, dislocation density
and concentration of fission gas atoms coupled with
vacancy clusters was studied numerically. The insta-
bility was found to develop if, at least, bulk diffusion
coefficient of uranium interstitials is doubled and
diffusion coefficient of uranium interstitials deter-
mining their annihilation at grain boundaries and
dislocations is kept the same. Instability was numer-
ically shown not to develop in case of equality of
these diffusion coefficients. However there was no
physical explanation in [8] why such a difference
of uranium interstitial diffusion coefficients can
arise. Also in the literature there is no closed-form
solution of the stability problem of homogenous
distributions of defects in nuclear fuel under irradi-
ation conditions.

Similar instability was considered in [9] to explain
a cause for dislocation periodic pattern formation in
irradiated metals and alloys. However, non-linear
dependences of point defects fluxes to dislocations
on their concentrations were not considered in [9]
due to much smaller concentrations of point defects
in irradiated metals. Also, expressions for instability
scales were obtained without account of mutual
point defects recombination.

The goal of the present paper is to determine a
possible mechanism leading to the Kinoshita insta-
bility, as this is one of the possible mechanisms of
high burnup structure formation. It was shown in
[10] that under fuel irradiation conditions a peak
in vacancy concentration forms near an edge dislo-
cation thus enhancing uranium interstitial recombi-
nation. Such ‘shielding’ of dislocation reduces the
uranium interstitial flux onto dislocation thus lead-
ing to the possibility of the Kinoshita instability
development. However, computations in [10] were
carried out without taking anisotropy of drift and
dislocation motion into account. In the present
paper a closed-form study of the stability problem
is carried out and dependences of time and space

scales of the instability upon parameters such as
dislocation density, fission rate and temperature
are found.

2. Stability analysis

Considering stability of spatial distributions of
defects in irradiated fuel, let us take into account
the following processes: point defects generation
resulting from passage of fast fission fragments
and interaction with the fuel crystal structure, diffu-
sion transport of the point defects, their recombina-
tion, their annihilation at dislocation loops and
increase of dislocation density, radiation-induced
resolution of dislocation loops by slowing down
fission fragments. There is no special account for
processes involving gaseous fission products because
it allowed us to obtain closed form solution for the
instability scales and also because fission gases do
not play explicit role in the instability mechanism
proposed by Kinoshita. This mechanism will be dis-
cussed later. Under these assumptions, similar to [8],
the system describing the variation with time of
averaged point defect concentration and dislocation
density can be written as follows:

Ocy

66; = Q - ﬁcicv - Jvnd +DVACV7

ac,-

E:Q_Bcicv_t]ind + Png + D;Ac;, (1)
0

g = Zthdislaé(J,- —JV — P)

Here Q is the source of uranium interstitials and
vacancies, proportional to fission rate F, D,, are
their diffusion coefficients, J;, are their fluxes to unit
length of dislocation, ay is lattice parameter, P is the
number of interstitial atoms being knocked out
from unit of dislocation length per unit time by
fission fragments.

Diffusion coefficients involve an athermal
component, related with intermixing inside tracks
of fission products [11]. The radiation-induced
component of vacancy diffusion coefficient can be
assessed as: D™ = r2.v, where ry, is the track radius,
and v is intermixing frequency, i.e. frequency of
fission fragments passage through the given lattice
region. In turn, v = 2V'F, where V is track volume.
One can see that D™ ~ 2nl,# F. At temperatures
of the high burnup structure formation (300-
600 °C) the athermal component is larger than the
thermal one for vacancies and much smaller than
the thermal one for uranium interstitials [11,12].
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Point defect recombination occurs with a
coefficient f. If determined with quasistationary
uranium interstitial flux to one vacancy, f§ equals:
p = DayZ,, where Z, is a ‘number of sites of inter-
action of uranium interstitials with a vacancy’, i.e. a
dimensionless geometric parameter, which is a fac-
tor in corresponding formula for reaction constant.

Regions rich with the uranium interstitials form
due to the interaction of slowing down fission frag-
ments with the fuel crystal structure. Uranium inter-
stitials combine into dislocation loops of small size
as this state is optimal with respect to elastic energy.
Then loops grow due to the uranium interstitial flux.
However if during the time between two consequent
passages of fission fragments through this region of
fuel the loop radius does not become greater than
the track radius the loop will be completely dis-
solved by slowing down fission fragment and the
process concerned will repeat. The formation of dis-
location loops of sufficiently large radius is possible
only if the uranium interstitial concentration is
sufficiently great.

In the beginning of fuel irradiation the vacancy
and uranium interstitial concentrations increase
until mutual recombination and annihilation mech-
anisms become significant. Then the concentration
of uranium interstitials in the fuel decreases consid-
erably, due to high mobility of interstitials, com-
pared with vacancy mobility. At large timescales
one can assume equilibrium between nucleation
and resolution processes for small dislocation loops.
For large dislocation loops equilibrium of fluxes of
point defects and radiation-induced knock-out of
uranium interstitials is established. Thus under
quasistationary conditions we assume that the volu-
metric concentration of dislocations cg;, i.€. their
number per unit volume, as well as their average
radius are constant. Under these assumptions, one
can abstract from the process of dislocation loops
nucleation which takes place at the initial stage of
fuel irradiation and consider the volumetric concen-
tration of the dislocation loops specified, e.g. taken
from the experimental data.

The process of radiation-induced knock-out of
uranium interstitials from dislocation loop edges is
characterized by a parameter P, which is the num-
ber of interstitial atoms being knocked out from
unit of dislocation length per unit time. It can be
estimated as follows: the track cross-section is
S = 2rl;, the track intersects with Sny dislocation
loops. From one site of intersection of loop edge
with track approximately N; = 0.5n(ry/a)* atoms

are knocked-out. Thus per unit time in unit volume
2FN,Sng = (2nri 1, F /a})ng atoms are knocked-out.
Approximately half of them which is knocked out in
front of the dislocation returns to it due to drift in
the field of its strain, therefore the resolution para-
meter is P ~ nr} I, F /a}. Later the ratio P/D, which
does not depend on fission rate £ at low tempera-
tures concerned will be denoted as p, and the value
2mcgiwai having the dimension of a reciprocal length
will be denoted as g.

Fluxes to dislocation J;, are convenient to char-
acterize with the following dimensionless para-
meters:

Jiy 1 oJ;y
(f)i,v = '

) = M
Ci,vDi,v Di,v aCi,v

In the system of Eq. (1) defect annihilation at the
grain boundaries is not taken into account, as well
as vacancy recombination with gaseous and solid
fission products, because it is not necessary for con-
sidering of the instability development mechanism,
essence of which is ‘unbalancing’ of point defect
fluxes to dislocation. In addition, under such a sim-
plified formulation, the problem can be solved up to
closed-form dependences.

Stationary spatially uniform solution of this sys-
tem conforms to flux balance condition: J; = J, + P,
which is equivalent to ¢; = (¢yDycy + P)/(¢;D,). The
system of Eq. (1) does not impose any conditions on
the dislocation density nq, therefore one needs spec-
ifying it. Since averaged point defects concentra-
tions depend on burnup, irradiation conditions
and the grain size, these should be in accordance
with those taken from the non-stationary problem
solution with the same parameters.

Perturbations of steady-state solution of Eq. (1)
can be found as

2)

(Di,v

Cy & Cy
a | =& | +éexp(lt+ikx), &= ¢ |,
ng ng ﬁd

3)

where I' is an increment of the instability. Accord-
ing to Eq. (1) linearized with respect to the small
perturbations one can obtain:

AE=T¢, where
—Be;— @.Dyng — kD, —Bey ~Jy
A= —Pe; —pey — ®;Ding —k*D; —J;+P
—q®,D, q;D; 0
(4)
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Thus the problem is reduced to determination of
eigenvalues of the matrix 4. Characteristic equation
is given by

(=I) + (=I)’trd + (—)Zp4 + det 4 = 0, (5)

where tr4 is the trace of the matrix A (sum of its
diagonal elements), X,4 is the sum of all principal
minors of second-order of the matrix 4 and det A4
is its determinant. After calculations using the con-
dition of flux balance for stationary homogenous
distributions we obtain:

det A=J,D,Dgk* (P, — &,), (6)

04 =k*DiD, + k> (B(Dyey + Dic;) +nyD:Dy (P + ,))
+ @, ®,D,Dynj + Png(®,Dic; + ®yDycy)
+qJ,(®:D; — ®,D,), (7)

trd = —(Bey +Di(Png + k7). (8)

As it will be shown later, to find a closed-form
solution of unstable mode increment (I" > 0) it is
enough to use linear approximation in I” in the char-
acteristic equation (Eq. (5)). However, even without
finding roots one can see that instability arises only
if @;<a@,. Indeed, Viet theorem implies that the
sum of all I (Eq. (8)) that satisfy the equation is
anyway negative, and the product of roots (Eq.
(6)) will be positive (it corresponds to one positive
and two negative roots) only if @; < @,. If ®,> @,
sum and production of roots are negative, and their
pairwise-sum (Eq. (7)) is positive, i.e. all roots are
negative and instability does not develop. If
&, = @, here exist two negative and one zero root,
thus instability does also not develop.

As a result the expression for increment is given
by

I = (K'D;Dy + K (B(Dycy + Dic;) +naDiDy (®; + B,))
+ @&;®,D;Dyn; + Pra(®;Dic; + ®,Dycy)
+¢J,(®:D; — ®.D,))” T D Digh’ (B, — &)

9)

Its maximal value

Fmax = (2k% . DD, + B(Dyc, + Dic;)

max

+n¢DiDy(®;+ D,)) ' J,D,Dig(®, — &;)  (10)
is reached as the wave number is equal to
Kmax = (@[dﬁvnﬁ + png(®ic;/Dy + Pycy/D;)
+qJ,(®:/Dy — ®,/D;))" (11)

Calculations with parameters in Table 1 were
carried out. Fig. 1 shows dispersion curve calculated
from Egs. (5) to (8) as well as dispersion curve
found using the linear approximation in I'. It is seen
that in considered region of parameters one can use
linear approximation in I'.

Calculations result in the following time of the
instability development and corresponding instabil-
ity wavelength: I' ! ~7x10"s; 2mk ! ~4x
10® m. The instability development time is of the
order of years and the wavelength is of order of
0.1 um, which is not far from size of fine grains
observed in polygonized regions. Hence the magni-
tudes of instability scales have the same orders as
experimentally observed values. It is important to
note that regarded model based on averaging of
concentration on the scale of mean inter-dislocation

Table 1
Calculation parameters of the instability problem
T Temperature
F Fission rate
] Source of point defects
D, U-interstitial diffusion coefficient [12]
D, Vacancy diffusion coefficient [11,12]
ap Lattice parameter
Z, ‘Number of sites’ of interstitial
interaction with vacancy (in recombination)
P Knock-out parameter
ng Dislocation density
Cdisl Dislocation concentration
i Parameters obtained by use of calculations for
by point defects behaviour near edge
D, dislocation (defined in Eq. (2))
¢v

A Drift length [13,14]

330 °C
10" fission/(m? s)

3 x 10°F =3 x 103 (m3/s)

7% 10 exp (—22000/T)=10""¢ (m?/s) (T = 330 °C)

1077 exp(—27800/T) 4 10~°F = 102! (m?/s)(T = 330 °C)
54x1071m

0.6

7.84 x 1073 F = 7.84 x 10°(m~! /s)

2x 10" m™2

2.27 x 10*! m~3 (corresponds to loop radius 1.4 x 1078 m)
2.90

10.77

2.06

3.73

1x107%m
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Fig. 1. Dispersion curve.

distance is valid only for perturbations with wave-
length greater than this distance, i.e. there must be
k<5x10"m™".
So, for instability development there must be
®; < @,, which is in accordance with Kinoshita’s
calculations, [8]. The essence of the instability can
be illustrated in the following way. Small growth
of local dislocation density leads to growth of ura-
nium interstitial and vacancy sink strengths and to
diminishing of their local concentration. At that,
diminishing of uranium interstitial local concentra-
tion hinders subsequent dislocation density growth,
because they are formed by uranium interstitial
atoms, and, on the contrary, diminishing of vacancy
local concentration facilitates it. If, in addition,
vacancy sink strength increases greater than ura-
nium interstitial one, vacancy concentration will
decrease faster than uranium interstitial concentra-
tion will increase. Thus dislocation density will
increase further, which can lead to the instability
development. In the following section it will be
shown that one of the possible causes leading to
such relation of point defect fluxes to dislocation
is ‘blocking’ of uranium interstitial flux by peak in
vacancy concentration. Near a dislocation there
occurs a drift of uranium interstitials in the field
of its strain, thus a region depleted with uranium
interstitials exists. It leads to growth of vacancy
concentration in this region, and a peak in vacancy
concentration is formed. When uranium interstitials
move through this peak, they recombine with
vacancies and their annihilation rate at the disloca-
tion is smaller than the annihilation rate under the
conditions of the vacancy peak absence. Similar
phenomenon happens when vacancies move
through the region where there are less uranium
interstitials than in average: vacancy sink strength
increases.

Let us consider the condition of new dislocation
loop formation. For very small loops of radius
R$™ nucleated from uranium interstitial atoms clus-
ters formed near fission spike regions diffusion
transport predominates, therefore interstitial flux
onto the dislocation loop equals: J; = 4nD;RyiqC;.
Since an amount of uranium interstitial atoms in
the dislocation loop is N; = nRﬁiS,/a(Z) and J, = N,,
one can see that Ryy = 2D;c;a}. Thus for the time
between two consequent fission fragment interac-
tions, the dislocation loop radius becomes: Ry =
2D;c;aj/v. Fission fragments will not dissolve the
dislocation loop if Rgi > ry. Thus, the condition
of increase of amount of small loops created from
the uranium interstitial clusters in the fission frag-
ments tracks has following form:

¢ > 75.

[. _ 12
ZD,-G% Di ( )

For the conditions given in Table 1, the threshold
value is: ¢ = 7.84 x 10 m~3, whereas calculated
uranium interstitial concentration is: ¢; = 3.65 x
10* m~— < ¢!, Thus one can neglect the contribu-
tion of small dislocation loops to total dislocation

loop density.

3. Numerical simulation of behaviour of point
defects near a dislocation

To determine correctly fluxes of point defects to
dislocations as well as their derivatives with respect
to corresponding concentrations (i.e. values ¢;,,
®;,) it is necessary to solve the problem of behav-
iour of point defects near an edge dislocation.

Many processes take place near the dislocation
core which are not considered ‘in the average’,
particularly, drift in the field of strain and convec-
tive drift caused by dislocation motion. On the other
hand, the problem of point defect behaviour near
dislocations should be solved consistently with the
averaged problem for the entire fuel grain. To sim-
ulate the behaviour of point defects near a disloca-
tion core the following system of equations was
used:

Acost
+u- Vci — Z;C;

DiAc; + D"Ve¢,; - V

— Beicy + AF + Png = 0.

Acos0
o8 +u-Ve,

D,Ac, — DithV -V

— zy¢y — Peicy + AF = 0.
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D are the thermal components of diffusion coeffi-
cients of uranium interstitials and vacancies,
accordingly. At low temperature, appropriate to
high burnup structure formation D; ~ D", D' ~ 0.
The second terms of Eqgs. (13) and (14) describe
drift, and A is a drift length; A = (GQb)(1 + )/
(3nkT(1 — p)) [13], where G and u are shear modu-
lus and Poisson’s ratio of the fuel, Q is a dilatation
volume of the point defects, b is Burgers’ vector of
the dislocation. z;, are virtual volumetric sinks of
the point defects included to obtain variation
of point defects fluxes to dislocation with respect
to their concentrations. The last term describes the
source of the point defects generated by tracks of
fission products. 4 is a number of point defect pairs
appearing on two tracks [11].

The velocity of dislocation edge motion is deter-
mined by difference of interstitial and vacancy fluxes
and resolution parameter: u = a}(J; —J, — P). J;y
are the fluxes of point defects per unit of dislocation
length: J,, = apD; foz " (dciy /or)l,_,,do.

The system of Eqs. (13) and (14) is solved inside
the 2D ring domain, inner radius being the lattice
parameter ag, outer one being ‘influence length’ of
the dislocation, which is defined as one-half of mean
distance between dislocations; R = 0.513%3.

Boundary conditions at the outer radius are cho-
sen to make concordance with averaged problem:
Civ|,—p = Civ, at the inner radius uranium intersti-
tials and vacancies are considered to be absent.

Averaged problem is solved consistently with
inner one

AF — ﬁZ’iEV — ZiZ',' — l’ldJi +B’ld = 0,

: (15)
AF — feiey — zy6y — ngJ, = 0.

Derived system is quasistationary one. Without
effective sinks (parameters z;,) its solution is in
accordance with the flux balance condition:
Ji=J,+ P. Effective sinks z;, were included to
slightly vary point defect concentrations ¢;, and
thus to obtain differential fluxes @;,.

System of Egs. (13)—(15) was solved numerically.
The solving procedure meets a singularity near
dislocation core caused by growth of interaction
energy of dislocation and point defects. This com-
plication was overcome in the following way. Since
solutions of equation near a dislocation are periodic
functions of angle, one can expand them into Fou-
rier series. Then equation with two spatial variables
becomes an infinite system of coupled 1D equations.
To solve this system we took a finite number of

angular harmonics until convergence was reached.
Obtained finite system of 1D differential equations
was solved using finite-difference method on non-
uniform mesh. Concordance equations (by velocity
and by averaged values) were solved using various
iteration methods. In calculation from 5 to 15 angu-
lar harmonics were used to reach desired stability
and accuracy of the scheme.

Calculations were carried out with the same val-
ues of input parameters (7, F, ng, O, Dy, ay, Z,, P)
as in the instability problem.

Calculations really show the presence of vacancy
peak near a dislocation. Figs. 2 and 3 show its gen-
eral view and contour plot of vacancy concentra-

Fig. 2. Peak in the distribution of vacancies. ¢ =3.6x
10 m™3.

¢, 10%m?
v

15
3.6
1
34
0.5 3.2
E
2 0 3
=
B 2.8
2.6
4
24
A5
A5 4 905 0 05 1 15

X, 10%m

Fig. 3. Vacancy concentration contour plot.
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Fig. 4. Distribution of uranium interstitials near dislocation core.

c 1023 -3
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Fig. 5. Uranium interstitial concentration contour plot.

tion. One can see that, firstly, peak is anisotropic,
and, secondly, is biased relative to dislocation core.
Here, if uranium interstitial flux were greater than
vacancy flux together with resolution, dislocation
would move from the right to the left (direction of
motion is indicated with an arrow), thus peak turn
out to be in dislocation tail. Similar plots (Figs. 4
and 5) are presented for uranium interstitials.
Calculations were carried out for the instability
increment using developed programs and analytical
results of the previous section (Eq. (11)) at various
values of parameters. Fig. 6 shows dependences of
the increment on fission rate £ and dislocation
density. Resulting proportional dependence on F
corresponds to burnup criterion determining poly-
gonization start of UO, fuel, because instability

nd,10‘4m 2
0 5 10 15 20
8
8
6
— &
o My
=] 4 o
4 %
2 2
0 0
0 1 2 3 4 8
F,10""m™

Fig. 6. Dependence of the instability increment on fission rate
(lower line) and dislocation density (upper line).

development is determined by value F/I', which
does not depend on £. The value /T has a physical
meaning similar to the threshold burnup. As disloca-
tion density increases polygonization must start
earlier, which is also in accordance with experimen-
tal observations. In this model instability increment
is independent of temperature explicitly, as it can be
seen from Egs. (9) to (11), which do not involve the
thermal diffusion coefficient D,;. However, as temper-
ature increases the dislocation density decreases due
to annealing (in this model the dislocation density is
a free parameter), and it might prevent instability
from development.

4. Conclusion

This paper deals with a study of one of the pos-
sible mechanisms of high burnup fuel polygoniza-
tion, namely, development of instability in spatial
distributions of crystal structure defects, proposed
by Kinoshita [8]. The stability problem is examined
analytically, formula of increment as well as
requirement for instability development are derived.
To obtain consistent values of parameters determin-
ing point defect fluxes to dislocation, a non-linear
system of equations describing diffusion, anisotropic
drift in the field of strain and convective drift caused
by dislocation motion were numerically solved. Sim-
ulation showed that near the dislocations vacancy
distribution peaks form and uranium interstitial
recombination is enhanced in that region thus
making Kinoshita’s instability development possi-
ble. Calculations allowed to obtain consistently
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instability increment dependence on various para-
meters, that proved to be in qualitative agreement
with existing experimental observations. In future
it is planned to further develop the model by
accounting for gaseous fission products in UO,
matrix and gas bubbles.
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